
Optimizing your Amazon Redshift

and Tableau Software Deployment

for Better Performance

By Russell Christopher, Vaidy Krishnan, and Sudhir Gupta

Table of contents

Introduction...3

 Tableau on Amazon Web Services.. 4

 About Amazon Redshift... 5

Optimizing Tableau.. 6

 Drivers.. 6

 Begin with summaries.. 6

 Aggregate measures.. 7

 Aggregate dates.. 7

 Dashboards.. 7

 Filters.. 8

 Not all filters are equal... 8

 Filters need design, too... 9

 Tableau and joins in Amazon Redshift.. 9

 About Level of Detail expressions/calculations... 10

Optimizing Amazon Redshift... 11

 Keep your tables narrow.. 11

 Building out your Amazon Redshift cluster... 11

 Sort keys, distribution keys and compression... 13

 Sort keys.. 13

 Distribution keys..14

 Compression... 16

 Encryption... 16

 Vacuum and analyze your tables...17

 An Amazon Redshift optimization example..17

Measuring performance between Amazon Redshift and Tableau	��� 27

 Tableau Server Admin Views...28

 Cursors and viewing query text data in the Amazon Redshift Console	���29

A few other considerations...31

 More about cursors.. 31

 Workload management and concurrency...32

 Amazon Redshift and Tableau extracts...34

 Amazon Redshift Spectrum..35

 The experiment..36

Conclusion..39

Updated July, 2019

Introduction
Amazon Redshift and Tableau Software are two powerful products in a modern analytics platform. With

Amazon Redshift, you can create a massively scalable, cloud-based data warehouse in just a few clicks.

Combined with the real-time responsiveness of Tableau, you can gain insights from that data just as easily.

Tableau natively connects to Amazon Redshift for advanced speed, flexibility, and scalability, accelerating
results from days to seconds.

From Box and Skyscanner to Pearson, thousands of customers are using Tableau on Amazon Redshift to analyze

massive amounts of data everyday with speed and agility and get the answers they need to drive strategic

action.

With Tableau, you just hook it up to the Redshift server, connect,

run a query, and publish it to the Server and you’re literally done in

an hour. It’s great—it feels like one product.

ABHISHEK GUPTA

SENIOR ANALYST, BOX

Deploying Tableau on Amazon Redshift was an enterprise-

wide transformation exercise for Pearson. Tableau on Amazon

Redshift provided next-generation data warehousing and analytics

capabilities that allowed us to rapidly increase Tableau usage

across the organization, resulting in operational efÏciencies, more

strategic programs and partnerships through evidence-based

decision-making, and ultimately, driving a data-enabled culture.

JASON LOKKESMOE

AVP, BIG DATA & ANALYTICS BUSINESS DEVELOPMENT, PEARSON

3

https://www.tableau.com/using-tableau-and-amazon-redshift-together
https://www.tableau.com/solutions/customer/box-cuts-analysis-time-days-hours-tableau-and-amazon-redshift
https://www.tableau.com/solutions/customer/skyscanner-takes-data-new-heights-tableau
https://www.tableau.com/learn/webinars/implementing-modern-data-platform-powered-tableau-and-aws

It’s important to understand how to optimize each tool when integrating the two together, and doing so can

yield considerable performance gains and ultimately shorten deployment cycles.

This paper introduces infrastructure advice as well as tips and hints to make the joint solution more efÏcient
and performant. Some highlights to keep in mind are:

•	 On the Tableau side, the key is to design optimal views and dashboards that encourage guided analytical

workflows, and not just open-ended data exploration. Always be on the lookout for ways to reduce the
queries Tableau needs to send to Amazon Redshift, focusing on the most important questions at hand.

•	 Knowing how you use Tableau is important to understanding how Amazon Redshift can be optimized to

return results fast. We will discuss several tools you can use to support the specific analytical workflows
you build in Tableau. This includes cluster sizing, sort keys, and other optimizations to improve Amazon

Redshift’s efÏciency.

•	 Finally, we cannot overemphasize the importance of measuring and testing the performance of your

integrated deployment. As you tune both Tableau and Amazon Redshift, you will make many changes;

some that are big, many that are small. Just as analyzing data is core to the success of an overall

business, measuring and analyzing the performance of your database and dashboards is core to the

success of your deployment.

Tableau on Amazon Web Services

Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform,

offering over 165 fully featured services from data centers globally. Millions of customers—including the
fastest-growing startups, largest enterprises, and leading government agencies—trust AWS to power their
infrastructure, become more agile, and lower costs. Tableau integrates with AWS services to empower

enterprises to maximize the return on your organization’s data and to leverage their existing technology
investments. It all starts with direct connections to Amazon data sources including Amazon Redshift

(including Redshift Spectrum), Amazon Aurora, Amazon Athena and Amazon EMR.

 Thanks to these market leading integrations, Tableau is the natural choice of platform for analyzing the

data stored in Amazon’s data sources. Beyond this, Tableau provides the depth and breadth of capabilities to

ensure that data can be confidently deployed across the entire enterprise. Tableau Server runs seamlessly in

AWS’s cloud infrastructure so organizations that prefer to deploy applications on Amazon Web Services have a

complete solution offering from Tableau.

An example of a customer who has successfully implemented Amazon Redshift and Tableau is Pearson.
Pearson offers educational courseware, assessments, and a range of teaching and learning services powered
by technology. The global company works with other learning institutions, such as K-12 schools, community
colleges, and businesses, as its clientele. At Pearson, data is spread across many sources and silos—yet
uncovering that data is critical to the success of the organization and its clients. Pearson wanted to increase

the likelihood of deriving insight from data, reduce time to insight, and simplify their architecture. At the

most fundamental level, Pearson needed access to better data, faster.

4

https://www.tableau.com/about/blog/2017/11/announcing-support-amazon-redshift-spectrum-external-s3-tables-tableau-104-77866
https://www.tableau.com/about/blog/2017/11/announcing-support-amazon-redshift-spectrum-external-s3-tables-tableau-104-77866
https://www.tableau.com/about/blog/2015/7/amazon-aurora-connector
https://www.tableau.com/about/blog/2017/5/connect-your-s3-data-amazon-athena-connector-tableau-103-71105
https://www.tableau.com/about/blog/2015/1/amazon-elastic-mapreduce-connector
https://aws.amazon.com/quickstart/architecture/tableau-server/
https://aws.amazon.com/quickstart/architecture/tableau-server/

Using Tableau and AWS, Pearson can better scale its data as its user base grows. Just a few years ago, Pearson

had roughly 500 Tableau users; now, more than 7000 users across different departments including Legal,
Facilities, Product, Marketing, HR, Supply Chain, Tech, Sales, and Product Analytics use the solution. Jason
Lokkesmoe—=AVP, Big Data & Analytics Business Development at Pearson—indicates that using Tableau and
AWS, the company has saved an estimated 68K hours across 900 projects over the past three years—work that
used to require four engineers up to two weeks on average to complete. For more on this use case watch this

recorded webcast.

Figure 1

About Amazon Redshift

Amazon Redshift is the most popular, fast, scalable, and simple cloud data warehouse built to serve workloads

at any scale. It allows you to run complex queries using sophisticated query optimization to deliver fast results
to Tableau. It also allows you to extend your datasets to include vast amounts of unstructured data in your
Amazon S3 “data lake” without having to load or transform any data. This opens up new possibilities for

Tableau users to explore new datasets and gain deeper insights quickly. You can get started at $0.25 per hour,
or with yearly costs below $1,000 per terabyte.

5

https://www.tableau.com/solutions/aws#reveal--2

Optimizing Tableau

Tableau is a powerful tool that lets people ask even the most complex of questions without writing reams of
code. As a popular saying goes though, “With great power comes great responsibility”.

To best leverage Amazon Redshift’s resources such that they are utilized wisely, in workload throughput, it is

important to carefully consider the design of your workbooks.

It’s tempting to throw as many items on to a dashboard, or to display fancy bells and whistles just because

you can. Instead, keep it simple. Display exactly what the most important data is, before allowing end users to
explore additional parts of the data.

A few topical areas are listed below with advice on each. For an in-depth read on the best tips and tricks for

the most performant workbooks, we recommend reading, Designing EfÏcient Workbooks.

Drivers

Although we include one in our installer, we still encourage users to upgrade when new versions of the

Redshift drivers are available. Instructions to download the driver can be found here: https://www.tableau.

com/support/drivers. Just filter for Data Source “Amazon Redshift” and the desired OS.

Begin with summaries

Analysts are most successful with Tableau when they use it to create analytical workflows, and not just
dashboards that display all the data possible. They build interactive applications that display summary data

first, and then give viewers the control to dive deeper into the data that’s most relevant to them.

Practically, this can mean filtering dashboards to only a few items, or displaying the data at an aggregate
level (e.g. Country) with simple tools to dive deeper into data most relevant to the user (e.g. City). Smart design

choices like these have concrete performance benefits (fewer rows of data are returned to Tableau), as well as
perceived performance benefits (Tableau does not have to query data when it is impossible to display all the
records on a dashboard without extensive scrolling).

6

https://www.tableau.com/learn/whitepapers/designing-efficient-workbooks
https://www.tableau.com/support/drivers
https://www.tableau.com/support/drivers

Aggregate measures

When connecting Tableau to any database with billions of rows of data, Amazon Redshift included, make

sure you’re working with aggregated measures instead of disaggregated measures. Working with aggregated

measures means that even if Amazon Redshift scans many billions of rows, it will aggregate the data and

return fewer rows back to Tableau. This reduces both perceived query execution time, and the number of data
points Tableau needs to actually render.

To do this, make sure the Aggregate Measures option on the Analysis menu is selected. For more information,
see the post on Data Aggregation in Tableau in the Tableau Knowledge Base.

Aggregate dates

When working with dates, try aggregating the data to the hour or day. This is particularly useful for time

series data that is generated at a high level of precision, but is not always analyzed at that level.

For example, website trafÏc data is typically machine-captured at the second, but is more often analyzed by
the hour or day. Aggregating the data to hour or day can significantly decrease the time it takes to answer
questions such as: What hour can I expect peak trafÏc to our website?

Create aggregate tables in Amazon Redshift

If you find that your dashboards primarily rely on aggregated data (such as aggregated dates by month
or day), it may be worth creating new tables that pre-aggregate the data into separate summary tables in

Amazon Redshift. Although this approach has some drawbacks, for summary dashboards that infrequently

change but are frequently loaded, the performance benefits can be huge. Know also that you have to re-load
with “re-aggregated” data each time new data is loaded into Amazon Redshift (or updated). The Tableau AWS

Modern Data Warehouse Quickstart demonstrates this process and is an excellent guide.

Dashboards

In Tableau, workbooks are composed of individual sheets, each of which displays a visualization. You can
combine multiple sheets to create dashboards and stories.

When connecting to an Amazon Redshift data source, however, it’s best to limit the number of items on a

dashboard. Displaying a dashboard requires Tableau to execute queries unless results are already cached. In
general, each sheet in your dashboard will often execute at least one query. Put ten sheets on a dashboard, and
you could have potentially ten queries targeting your Amazon Redshift instance at once.

Your sheets may also utilize Quick Filters, which are powerful tools to filter data. Quick filters often fire
additional queries to determine “filterable values” to display to users. After combining several sheets with
Quick Filters into your dashboard, it could end up executing more than a dozen queries. You could set up
proper workload management queues and slots in Amazon Redshift to better service these queries, but these

queries may still likely queue and therefore deliver poor perceived performance.

7

https://help.tableau.com/current/pro/desktop/en-us/calculations_aggregation.htm
https://help.tableau.com/current/pro/desktop/en-us/calculations_aggregation.htm
https://aws.amazon.com/quickstart/architecture/edw-tableau-server/
https://aws.amazon.com/quickstart/architecture/edw-tableau-server/

So, our guidance is to err on the side of sending fewer queries to allow for better latency. The rule here

is, “less is more.” This not only applies to the number of queries you need to send to Amazon Redshift, but

also the human brain’s ability to process information. It can be difÏcult to see the important details on a
dashboard when there are 15 separate charts to look at, all at once; And it has the added benefit of allowing
you to keep your Amazon Redshift design simple.

Filters

Be deliberate with filters. Amazon Redshift, like most other columnar databases, doesn’t have indexes, so it
scans data when answering a question for Tableau. Creating filters in Tableau with supporting sort keys in
Amazon Redshift can reduce the amount of data Amazon Redshift needs to scan (more on sort keys below).

On the Tableau side, authors often create interactive experiences which begin by returning “all” data. An
author will craft a worksheet which shows “everything” and allow end users to narrow down what they want

to see. When using Amazon Redshift as a data source, it’s best practice to reverse this approach: Display the
smallest meaningful subset of data as possible, but give the end user the option to discover additional useful

data meaningful by “loosening” filters.

Not all filters are equal

Quick filters are powerful tools, but most require a database query to populate the filter’s values, and each
query has varying levels of cost. For example, determining the values to display in a ranged date filter takes
longer than for a relative date filter. In fact, relative date filters don’t require a query at all, since their display
values are constant (i.e., choose everything 30 days prior to today). On the other hand, ranged date filters
require a query to get the start and end date in order to return those values to the end user as a range of dates.

Sets can also be used as a cheaper alternative to some filters, particularly if you limit sets to a few items. They
are less flexible, but therefore reduce query load time. For example, you can create sets that return the Top 50
items within a dimension, rather than having to query all the items and then filtering to the Top 50. For more
information on Sets, see Creating Sets in the Tableau online help.

Filters need design too

Quick filters can be customized with a variety of options that can affect query execution time. “Show relevant
values” is a powerful way to force filters to omit values that are no longer relevant based on other selections
made in related filters. However, this process requires the execution of additional queries to determine
whether or not filterable values are still relevant. Use this feature sparingly.

Similarly, the “multiple selection” filter with checkboxes will immediately run a query every time an item
is selected or deselected, without waiting to see if a user intended to select other items as well. You can
customize the filter to display an “Apply” button, which will wait to rerun the query until the “Apply” button
is clicked.

8

https://help.tableau.com/current/pro/desktop/en-gb/sortgroup_sets_create.htm

Tableau and joins in Amazon Redshift

Row-based databases require joins to accomplish data analytics, such that joins have become the norm in the

business intelligence world. In column-based databases, fewer joins imply better performance. You can get
better throughput in Amazon Redshift with fewer joins, but in Tableau you will still need them.

Here are some tips to improve their performance:

In general, if you have related tables you want to join together, define those relationships with primary and
foreign keys in the database. Tableau can use this information to implement join culling, a process to simplify

queries by using fewer joins, which allows Amazon Redshift to answer your questions faster.

Tableau users who are not database administrators can tell Tableau to “pretend” that the joins in the data

source are backed up with primary keys and foreign keys. To do this, simply turn on “Assume Referential

Integrity” in the Tableau data source. Only do this if the relationships hold in your database, because if you

give Tableau incorrect information, it may show incorrect results.

Figure 2

For more on join culling and referential integrity, we recommend checking out Assuming Referential Integrity

in the online Tableau Help section.

9

https://help.tableau.com/current/pro/desktop/en-us/joins_assume_refinteg.htm

Finally, when creating joins, make sure the columns you’re joining are defined as NOT NULL in the Amazon
Redshift table definition. If Tableau sees that a field used in a join might contain nulls, Tableau will check the
data for null values during the join. This will cause Tableau to issue a query that is more complex, and it will
likely take longer to complete.

About Level of Detail expressions/calculations

Level of Detail Expressions are modifications to calculated fields within Tableau, and are often used
to aggregate data a second time (e.g. taking the average of an average). These are extremely powerful
calculations. However, they sometimes result in the generation of cross joins, which can negatively impact
query performance in most databases, much less Amazon Redshift.

When using Level of Detail expressions, create a sort key on the dimension being used in the calculated
field to improve their performance. You may need to view the actual underlying query to pinpoint the exact
dimension (see the Optimizing Amazon Redshift, and Measuring performance section for more information).

Optimizing Amazon Redshift

There are two general areas to focus on when optimizing the Amazon Redshift side of your Amazon Redshift-

Tableau deployment: Simplifying the database itself, and optimizing Amazon Redshift specifically for how
you’ll integrate it with Tableau.

For Amazon Redshift or any other columnar database for that matter, this means fewer joins, denormalizing

table schemas, merging dimension tables into fact tables, and keeping columns sizes in tables as narrow as

possible. All of these will improve query performance.

For the best integrations with Tableau, this means learning what analytical workflows you plan on promoting.
Not all columns of data are of equal importance, and knowing which fields are used most often and are most
critical will allow you to optimize Amazon Redshift to support prioritizing those fields through sort keys,
distribution keys, and more.

If you’re new to Amazon Redshift, we recommend reading the system overview, which explains many of the
below concepts and considerations in great detail:

10

Keep your tables narrow

Remove unused columns and opt for additional tables instead of egregiously wide ones. This is because Redshift

is a columnar database and data is stored on disk column by column rather than row by row like you would in

a traditional database like Postgres. This comes with a huge performance advantage as analytical queries only

deal with a subset of columns. Therefore, we would only scan certain blocks for relevant columns and are able to

reduce the amount of I/O that needs to happen. This also explains why “select *” type queries are inefÏcient and
unnecessary as Redshift has to do additional work to access all columns causing heavy disk I/O.

You must also use the smallest possible column size. Why? It’s because when executing queries, Redshift allots
memory based on declared column width, not actual size of data in the column. Wider-than-necessary columns

waste RAM and decrease the number of rows that can be loaded into memory. This results in a higher chance
queries might spill to disk and slow down.

Here are some additional resources on performance tuning and database design:

	 • 	 Best practices for designing tables

	 • 	 Tuning query performance

	 • 	 Loading tables with automatic compression
	 • 	 Increasing the available memory

	 • 	 Best Practices for loading data

	 • 	 Implementing workload management

Building out your Amazon Redshift cluster

When deploying Amazon Redshift, you have two sets of node types, each with two sizes, for a total of four

cluster options. Each option will influence the capabilities of your cluster, specifically regarding compute power,
memory, and storage. In turn, each capability influences the speed of your queries and the time it takes to
display your Tableau dashboards.

Amazon Redshift supports:

•	 Dense storage nodes (DS2), which are useful for creating very large data warehouses using hard disk drives
(HDDs). They are the most cost-effective and highest performance option for customers with tons of data
that won’t fit on DCs. Customers for whom performance isn’t as critical or whose priority is reducing costs
further can use the larger dense storage nodes and scale up to a petabyte or more of compressed user data

for under $1,000/TB/year (3-year Reserved Instance pricing). Dense storage nodes come in two types:
xlarge and 8xlarge.	

•	 Dense compute nodes (DC2), which are useful for creating very high-performance data warehouses
using fast CPUs, large amounts of RAM and solid-state disks (SSDs). They provide the highest ratio of
CPU, memory and I/O to storage for customers whose primary focus is performance. DC2 is designed for
demanding data warehousing workloads that require low latency and high throughput. If your existing
Redshift cluster is using first generation DC1 nodes, we recommend you to upgrade DC1 nodes to second-
generation Dense Compute (DC2) nodes to get up to twice the performance of DC1 at the same price. Dense
compute nodes come in two types: large and 8xlarge.

11

http://docs.aws.amazon.com/redshift/latest/dg/c_designing-tables-best-practices.html
http://docs.aws.amazon.com/redshift/latest/dg/c-optimizing-query-performance.html
http://docs.aws.amazon.com/redshift/latest/dg/c_Loading_tables_auto_compress.html
http://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-increase-slot-count.html
http://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html
http://docs.aws.amazon.com/redshift/latest/dg/cm-c-implementing-workload-management.html

For more information, see Clusters and Nodes in Amazon Redshift.

The same query against the same data will perform significantly faster when using the dense compute (DC2)
class of nodes, resulting in more responsive Tableau workbook performance.

You can increase the capabilities of your cluster by scaling out the cluster and increasing the number of nodes,
or by scaling up and changing the node size to a larger node. Your cluster sizing decisions will be influenced
by how fast you want dashboards to load and how complex those dashboards are (i.e. how many queries need
to be executed). Scaling your cluster will, of course, improve performance, but it must be the start of where
you spend time optimizing Amazon Redshift; without the additional tuning and optimizations below, you’ll

miss out on many additional performance improvements.

As a rule of thumb, we recommend Dense Compute Nodes (DC2) for their ability to run complex queries (e.g.
queries with many joins) in an efÏcient manner across many nodes.

The following image shows the Amazon Redshift console for launching a cluster:

Figure 3 [Figure 2: AWS console - Amazon Redshift cluster launch]

For more information on node types and sizing options, see Amazon Redshift Clusters in the Amazon Redshift

Management Guide.

12

http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html

Sort keys, distribution keys and compression

If there’s only one thing you do after building your Amazon Redshift cluster, it should be tuning your

Amazon Redshift tables with sort keys, distribution keys, and compression. We recommend the following

two guides:

	 • 	 Tutorial: Tuning Table Design

	 • 	 Advanced Table Design Playbook

Sort keys

A sort key defines the order in which data is stored on disk. When data is sorted in a way that supports
querying, Amazon Redshift scans less data and filters efÏciently on the query predicates (your “WHERE”
clause).

Sort keys are critical to an optimized Amazon Redshift deployment with Tableau. For example, if you
have ten years of hospital patient visit data, every datetime-related query must scan all data to return

the results. Placing a sort key on that date column allows Amazon Redshift to order the data by date,

meaning time-related queries can skip dates that aren’t relevant.

In Amazon Redshift, you can order data by multiple columns using two different methods:

	 1.	 Compound sort keys, which list columns used in the sort key within a specific order.
	 2.	 Interleaved sort keys, which give equal weight to all of the columns used in the sort key.

If you follow the above guidelines for optimizing Tableau, it should come as no surprise that we

recommend using compound sort keys. One of Tableau’s greatest strengths is building dashboards that

promote an analytical workflow, answering one question and then showing more data to answer the
next. Compound sort keys are perfect for this, in that they first sort the data according to one column,
followed by subsequent columns within the sort key.

For example, take two fields in a sales dataset: Color and Product Type. There are likely only a handful
of colors, but potentially thousands of product types. If you design a dashboard to encourage users

to analyze sales first by Color and then by Product Type, you can easily create a compound sort key,
choosing first the column Color, followed by Product Type. The result is drastically improved queries that
filter the data to a specific color, and also queries that filter the data to a specific Color and Product Type.
However, this sort key will have no effect if a query filters only on Product Type.

When a column specified for your sort key is highly selective (often called high cardinality), adding more
columns to your sort keys provides little benefit and has a maintenance cost, so only add columns if
selectivity is low. In this example, we can assume that Color has low cardinality so it’s likely that adding
Product Type will have a benefit. If you were to sort first by Product Type, it’s unlikely that adding Color
to the sort key will produce any performance gains.

13

http://docs.aws.amazon.com/redshift/latest/dg/tutorial-tuning-tables.html
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-preamble-prerequisites-and-prioritization/

Though they should be used sparingly, the benefit of interleaved sort keys is all columns in the key are given
equal weight. Queries can choose to filter on any column, in any order, and potentially see a performance
gain for doing so, at the cost of increased load and vacuum times. In our Color and Product Type example, an
interleaved sort key allows queries to filter on either of the two columns, or any additional ones added to the
sort key, though again, at an increased maintenance cost. In most analytical workflows, however, you almost
always know which fields are most important and likely to be used first (e.g. Date or Product Type, over
Product Model Number).

See Choosing Sort Keys in the Amazon Redshift Developer Guide for information that will help you decide
which columns to designate for sort keys and distribution keys.

Here are a few tips:

•	 Put sort keys on the columns which are used as quick filters.

•	 If dashboards query “recent data” more often, consider using the timestamp column as the lead column

in a compound sort key.

Distribution keys

Choosing a distribution style and optimal distribution keys for your tables can significantly improve the
performance of joins.

Amazon Redshift handles large amounts of data by parallelizing operations across multiple nodes, known

as massively parallel processing. You can influence how this parallelization is implemented through three
distribution styles (EVEN, KEY, or ALL) that define how data for a table is spread across the whole cluster.
Tables can only have a single distribution key.

Combined with sort keys, carefully-planned distribution keys can lead to huge performance gains. For

example, if you frequently join a table, specify the join column as both the sort key and the distribution key.
This enables the query optimizer to choose a sort merge join instead of a slower hash join. Because the data is

already sorted on the join key, the query optimizer can bypass the sort phase of the sort merge join, allowing

Amazon Redshift to scan less data for each distinct item in the column.

Refer to Advance table design playbook or Choosing a data distribution method in the Amazon Redshift

Developer Guide to decide which columns to designate for Distribution Keys”

As their guide states, you should have two goals when distributing data:

	 1. �Minimize the movement of data across nodes. If two tables are often going to be frequently joined
together, load corresponding join data on the same node (i.e. basically distribute on the join keys) to

reduce query time.

14

http://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/
http://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html

	 2. �Evenly distribute data tables. Uneven distribution, also known as data distribution skew, means
there’s more data on one node than another, forcing some nodes in your cluster to do more work.

This negatively impacts query performance. One easy way to test for data distribution skew is to

visualize it in Tableau itself; bucket data in Amazon Redshift based on a potential distribution key

field, and connect to it in Tableau.

KEY Distribution: A common distribution style for large tables is KEY. You specify one column in the table
to be the KEY when you create the table. All the rows with the same key value always go to the same node. If
two tables use the KEY distribution style, the rows from both tables with the same key go to the same node.
This means that if you have two tables that are commonly joined, and the columns used in the join are the

distribution keys, then joined rows will be collocated on the same physical node. This makes queries perform

faster since there is less data movement between nodes. If a table, such as a fact table, joins with multiple

other tables, distribute on the foreign key of the largest dimension that the table joins with. Remember to

make sure that the distribution key results in relatively even distribution of table data.

ALL Distribution: the second distribution style, also promotes co-location of data on a join. This style

distributes all the data for a table to all the nodes in the cluster. Replicating the data to each node has a

storage cost and increases load time, but the tradeoff is that tables will always be local for any joins, which
improves query performance. Good candidates for ALL distribution are any small dimension table, and
specifically any slowly changing dimension tables in a star schema that don’t share the same distribution key
as the fact table.

EVEN Distribution: If you do not choose a distribution style of KEY (by specifying DISTKEY when creating
your table) or ALL (by specifying diststyle ALL when creating your table), then your table data is evenly
distributed across the cluster. This is known as the EVEN distribution style.

AUTO Distribution: With AUTO option, Amazon Redshift assigns an optimal distribution style based on the

size of the table data. For example, Amazon Redshift initially assigns ALL distribution to a small table, then
changes to EVEN distribution when the table grows larger.

See Advance table design playbook to decide which columns in your tables you should designate for

distribution key and sort key.

Also, Amazon Redshift launched a new capability called Redshift Advisor that will provide recommendations

on distribution keys and sort keys based on the query patterns of your cluster.

15

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/
https://docs.aws.amazon.com/redshift/latest/dg/advisor.html

Compression

Compression settings can also play a big role when it comes to query performance in Amazon Redshift.

Amazon Redshift optimizes data I/O and space requirements using columnar compression. It does this by

analyzing the first 100,000 rows of data to determine the compression settings to use for each column when
copying data into an empty table.

Most often you will want to rely upon the Amazon Redshift logic to automatically choose the compression
type for you (strongly recommended). Advanced users can override these settings by specifying the

compression scheme for each column when creating a table. Ensuring your columns are appropriately

compressed leads to faster queries, because more data can be transferred with each read, and lower costs,

because you may be able to house your data in a smaller cluster. See Choosing a column compression type and

Loading tables with automatic compression in the Amazon Redshift Developer Guide for additional details on
loading data with and controlling compression options.

Consider setting COMPUPDATE ON, when you are loading data to an empty table using COPY command. It
ensures that optimal column encodings are applied to the table. For incremental loads to a Redshift table and

when stage table has same encodings as final table, consider setting option COMPUPDATE OFF when using the
COPY command. Data may change over a period of time, so the existing encoding may not be the best choice
for your table. Analyze Compression to ensure that you still have optimal compression settings.

You can run Analyze Compression periodically or use the compression encoding recommendations generated

by Redshift Advisor to ensure that you still have optimal compression settings to get better performance.

 Here are a few tips:

•	 Don’t compress the first column in a compound sort key. You might end up scanning more rows than
you have to as a result.

•	 Don’t compress a column if it will act as a “single column sort key” (for the same reasons above).

Encryption

Certain types of applications with sensitive data require encryption of data stored on disk. Amazon Redshift

has an encryption option that uses hardware-accelerated AES-256 encryption and supports user-controlled
key rotation. Using encryption helps customers meet regulatory requirements and protects highly sensitive

data at rest. Amazon Redshift has several layers of security isolation between end users and the nodes with

the stored data. For example, end users cannot directly access nodes in an Amazon Redshift cluster where the
data is stored. But even with hardware acceleration, encryption is an expensive operation that slows down
performance by an average of 20%, with a peak overhead of as much as 40%.

Carefully determine if your security requirements require encryption beyond the isolation Amazon Redshift

provides, and only encrypt data if your needs require it. We also recommend testing perceived performance in

Tableau with using encryption and without, and comparing the results.

For more information on encryption, see Amazon Redshift Database Encryption in the Amazon Redshift

Management Guide.

16

http://docs.aws.amazon.com/redshift/latest/dg/t_Compressing_data_on_disk.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Loading_tables_auto_compress.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ANALYZE_COMPRESSION.html
https://docs.aws.amazon.com/redshift/latest/dg/advisor.html
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html

Vacuum and Analyze Your Tables

The ANALYZE operation updates the statistical metadata of table so that the query planner can choose optimal
plans. By default, Amazon Redshift continuously monitors your database and automatically performs analyze

operations in the background. To minimize impact to your system performance, automatic analyze runs

during periods when workloads are light.

When your are loading data using the COPY command, specifying the STATUPDATE ON option automatically
runs analyze after the data finishes loading. If you run ANALYZE as part of your extract, transform, and load
(ETL) workflow, automatic analyze skips tables that have current statistics. Similarly, an explicit ANALYZE
skips tables with up-to-date table statistics. For more information on ANALYZE, read Analyzing tables in the

Amazon Redshift Developer Guide.

After loading data that causes a significant number of additions, updates, or deletes, you may consider
running a VACUUM command to optimize performance. Amazon Redshift now automatically runs the

VACUUM DELETE operation to reclaim disk space occupied by rows that were marked for deletion by previous

UPDATE and DELETE operations. For tables with a sort key and have a large number of unsorted rows, you
should consider running VACUUM SORT to sort the unsorted rows for better performance.

VACUUM is a resource intensive operation, so you will want to run the command during off-peak times
and increase the amount of memory available to the VACUUM command for faster execution. Automatic

VACUUM DELETE pauses when the incoming query load is high, then resumes later. For more on VACUUM see
Vacuuming tables in the Amazon Redshift Developer Guide.

Note that the COPY command will sort the data when loading a table so you do not need to vacuum on initial
load or sort the data in the load files.

If you are loading multiple files into a table, and the files follow the ordering of the sort key, then you should
execute COPY commands for the files in that order. For example, if you have 20130810.csv, 20130811.csv, and
20130812.csv representing three different days of data, and the sort key is by datetime, then execute the COPY
commands in the order 20130810.csv, 20130811.csv, and 20130812.csv to prevent the need to vacuum.

An Amazon Redshift optimization example

For this exercise we’re using as the source the TPC-DS database.

TPC-DS models the decision support functions of a retail product supplier selling through 3 channels (stores,
web, and catalogs), while the data is sliced across 17 dimensions including Customer, Store, Time, Item, etc.
The bulk of the data is contained in the large fact tables: Store Sales, Catalog Sales, Web Sales—representing
daily transactions spanning 5 years. Read specs here.

17

https://aws.amazon.com/about-aws/whats-new/2019/01/amazon-redshift-auto-analyze/
https://docs.aws.amazon.com/redshift/latest/dg/t_Analyzing_tables.html
https://aws.amazon.com/about-aws/whats-new/2018/12/amazon-redshift-automatic-vacuum/
https://aws.amazon.com/about-aws/whats-new/2018/12/amazon-redshift-automatic-vacuum/
https://aws.amazon.com/about-aws/whats-new/2018/12/amazon-redshift-automatic-vacuum/
https://aws.amazon.com/about-aws/whats-new/2018/12/amazon-redshift-automatic-vacuum/
https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.11.0.pdf

It has been used extensively for testing performance, scalability and SQL compatibility across a range of Data
Warehouse queries—from fast, interactive reports to complex analytics. In order to address the enormous
range of query types and user behaviors encountered by a decision support system, TPC-DS utilizes a
generalized query model. This model allows the benchmark to capture important aspects of the interactive,

iterative nature of on-line analytical processing (OLAP) queries, the longer-running complex queries of data
mining and knowledge discovery, and the more planned behavior of well known report queries.

It’s a 3TB dataset and the size of the largest table is 8.6B rows. This data was loaded into a 4 node dc2.8xlarge
Redshift cluster in us-east-1 with the following capacity configuration.

•	 CPU 99 EC2 Compute Units (32 virtual cores) per node

•	 Memory 244 GiB per node

•	 Storage 2.56TB SSD storage per node

We are analyzing store sales data with a ~8.6 billion row store_sales fact table in Amazon Redshift

modeled as follows:

Figure 4

To ensure we are getting a true reflection of comparative Redshift performance between scenarios, let’s turn

off the Tableau cache.

You might also need to turn off cursors by altering your .TWB file (which is really just an xml file) and adding
the following parameters to the odbc-connect-string-extras property.

•	 UseDeclareFetch=0;

•	 FETCH=0;

18

This will allow you to see what query is actually running under the hood in the Redshift console. This is

explained further in the section below titled Cursors and viewing query text data in the Amazon Redshift

Console.

You can also see the same by enabling the performance recorder feature in Tableau.

Let’s also turn off the Redshift cache. You can do this by adding the command set enable_result_cache_for_
session to off; in the Initial SQL dialog box on the Redshift connection window.

The goal after all is to force Redshift to work hard, so we don’t want Tableau’s or Redshift’s cache getting in

the way and making Redshift’s life easy. The perceived performance results you’ll see are therefore “worst

case” because we always wait on an answer from Redshift before the user gets a result.

Now, let’s generate the following visualization in Tableau, which attempts to explore whether credit ratings
have any influence on how product sales trend over time across categories. The answer seems to be that it
doesn’t (not surprising, since it is synthetic benchmark data). We’ll start by keeping the tables unoptimized.

Figure 5

The data model is as follows:

Figure 6

19

https://kb.tableau.com/articles/howto/viewing-underlying-sql-queries-desktop

The query Tableau issues to generate this visualization is as follows:

SELECT

 “customer_demographics”.”cd_credit_rating” AS “cd_credit_rating”,

 “item”.”i_category” AS “i_category”,

 SUM(“store_sales”.”ss_net_paid”) AS “sum:ss_net_paid:ok”,

 DATE_TRUNC(‘MONTH’,

 CAST(“date_dim”.”d_date” AS TIMESTAMP WITHOUT TIME ZONE)) AS “tmn:d_date:ok”

FROM

 “public”.”store_sales” “store_sales”

LEFT JOIN

 “public”.”customer_demographics” “customer_demographics”

 ON (

 “store_sales”.”ss_cdemo_sk” = “customer_demographics”.”cd_demo_sk”

)

LEFT JOIN

 “public”.”item” “item”

 ON (

 “store_sales”.”ss_item_sk” = “item”.”i_item_sk”

)

LEFT JOIN

 “public”.”date_dim” “date_dim”

 ON (

 “store_sales”.”ss_sold_date_sk” = “date_dim”.”d_date_sk”

)

WHERE

 (

 (NOT (“customer_demographics”.”cd_credit_rating” IS NULL))

 AND (

 (“item”.”i_category” <> ‘’)

 OR (

 “item”.”i_category” IS NULL

)

)

)

GROUP BY

 1,

 2,

 4

20

As can be gleaned from the performance recorder snapshot for this query, this naive table design took 		

50.76 seconds to return a result.

Figure 7

Let’s progressively apply some optimization techniques to improve response times for this query. First let’s
add some distribution keys. The primary goal is to ensure that data is distributed efÏciently throughout the
cluster for parallel processing. A secondary goal is to minimize the cost of data movement necessary for query

processing.

The following statements add distribution keys to the tables being used in the query. In general, it’s best

practice to use the columns being joined on as distribution keys as you see in store_sales,customer_

demographics and item

For small dimension tables like date_dim, it makes sense to use a distribution style of ALL and store a
full copy of the table on the first slice of each node. It’ll take a little bit more storage but at least we’re not
broadcasting over the network across nodes any more—which is a huge win in terms of performance.

ALTER TABLE store_sales RENAME TO store_sales_backup;

CREATE TABLE store_sales

distkey(ss_item_sk)

as SELECT * from store_sales_backup;

DROP TABLE store_sales_backup;

21

ALTER TABLE customer_demographics RENAME TO customer_demographics_backup;

CREATE TABLE customer_demographics

distkey (cd_demo_sk)

as SELECT * from customer_demographics_backup;

DROP TABLE customer_demographics_backup;

ALTER TABLE item RENAME TO item_backup;

CREATE TABLE item

distkey(i_item_sk)

as SELECT * from item_backup;

DROP TABLE item_backup;

ALTER TABLE date_dim RENAME TO date_dim_backup;

CREATE TABLE date_dim

diststyle all

as SELECT * from date_dim_backup;

DROP TABLE date_dim_backup;

Refreshing the visualization after performing the tuning steps above cuts down the query response times in

half to 26.66 seconds as the performance recorder shows below.

Figure 8

22

A methodology to guide you through the identification of optimal DISTSTYLEs and DISTKEYs for your
unique workload is available in the Distribution Styles and Distribution Keys section of the Amazon

Redshift Engineering’s Advanced Table Design Playbook.

Next, we can optimize, by adding sort keys on the columns in the WHERE clause.

If the data is sorted right on disk, your query does less work. It will skip entire blocks of data and get

a faster answer to your question. In general, filtered columns make excellent sort key candidates. The
following commands will add sort keys

ALTER TABLE customer_demographics RENAME TO customer_demographics_backup;

CREATE TABLE customer_demographics

distkey (cd_demo_sk)

sortkey (cd_credit_rating)

as SELECT * from customer_demographics_backup;

DROP TABLE customer_demographics_backup;

ALTER TABLE item RENAME TO item_backup;

CREATE TABLE item

sortkey (i_category)

distkey(i_item_sk)

as SELECT * from item_backup;

DROP TABLE item_backup;

23

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/

We see a slight, performance improvement as a result of this. The execution time is now down to 25.71 seconds

Figure 9

Finally, let’s try to simplify the schema by precomputing the join operation or in other words, flattening the
schema. Flattening complex schema reduces unnecessary join work. If you have a snowflake schema, make it a
star. If you have a star schema, merge the smaller dimension tables into the fact table. This will result in a new

precomputed table;

CREATE TABLE result_set AS

SELECT

 “customer_demographics”.”cd_credit_rating” AS “cd_credit_rating”,

 “item”.”i_category” AS “i_category”,

 SUM(“store_sales”.”ss_net_paid”) AS “sum:ss_net_paid:ok”,

 DATE_TRUNC(‘MONTH’,

 CAST(“date_dim”.”d_date” AS TIMESTAMP WITHOUT TIME ZONE)) AS “tmn:d_date:ok”

24

FROM

 “public”.”store_sales” “store_sales”

LEFT JOIN

 “public”.”customer_demographics” “customer_demographics”

 ON (

 “store_sales”.”ss_cdemo_sk” = “customer_demographics”.”cd_demo_sk”

)

LEFT JOIN

 “public”.”item” “item”

 ON (

 “store_sales”.”ss_item_sk” = “item”.”i_item_sk”

)

LEFT JOIN

 “public”.”date_dim” “date_dim”

 ON (

 “store_sales”.”ss_sold_date_sk” = “date_dim”.”d_date_sk”

)

WHERE

 (

 (NOT (“customer_demographics”.”cd_credit_rating” IS NULL))

 AND (

 (“item”.”i_category” <> ‘’)

 OR (

 “item”.”i_category” IS NULL

)

)

)

GROUP BY

 1,

 2,

 4

25

Pointing to this precomputed table directly, reduces unnecessary joins and brings query execution time down
to a mere 28 ms. The query tableau issues in this case is as follows.

SELECT “result_set”.”cd_credit_rating” AS “cd_credit_rating”,

“result_set”.”i_category” AS “i_category”,

SUM(“result_set”.”sum:ss_net_paid:ok”) AS “sum:sum:ss_net_paid:ok:ok”,

DATE_TRUNC(‘MONTH’, CAST(“result_set”.”tmn:d_date:ok” AS TIMESTAMP WITHOUT TIME

ZONE)) AS “tmn:tmn:d_date:ok:ok”

FROM “public”.”result_set” “result_set” WHERE ((“result_set”.”cd_credit_rating” >=

‘Good’)

AND (“result_set”.”cd_credit_rating” <= ‘Unknown’) AND (“result_set”.”i_category” >=

‘Books’)

AND (“result_set”.”i_category” <= ‘Women’)) GROUP BY 1, 2, 4

In other words, optimizing your Amazon Redshift deployment can lead to exponential decreases in query
execution time, which in turn make Tableau fast.

26

Measuring performance between Amazon Redshift

and Tableau

The best way to successfully deploy Amazon Redshift and Tableau together is to measure the performance of

your deployment—query and dashboard load times—and track the impact of each and any modifications you
make. Tableau provides two simple options to understand how your workbooks are performing and where

they take the longest amount of time to load.

Tableau Performance Recorder

Tableau comes with a built-in performance recorder, which reports various details about the sheets within

a workbook, including total load time and how much of it was spent executing queries versus computing the
correct display layout.

Figure 10

For more detailed documentation on Tableau performance recorder, visit the Performance section of Tableau’s

Help page.

27

http://onlinehelp.tableau.com/current/pro/desktop/en-us/perf_record_create_desktop.html?tocpath=Reference%7COptimize Workbook Performance%7C_____8

Tableau Server Admin Views

Every instance of Tableau Server comes with built-in administrative dashboards that, among several metrics,

report the load times for each view over time. Specifically, you can use the “Stats for Load Times” view under
“Status.”

Figure 11

28

Cursors and viewing query text data in the Amazon Redshift Console

If you’re looking to go even deeper in measuring performance, Amazon Redshift comes with a console that

allows you to view the actual queries a client sends to Amazon Redshift. However, since Tableau uses cursors
with Amazon Redshift, you will only see the cursor executing—not the plain-text SQL.

However, Tableau uses cursors when returning a resultset from Redshift. The side effect of using a cursor is
that you can’t see the actual plain-text SQL that Tableau fires inside the Redshift console. Instead, you’ll get a
message like:

 FETCH 10000 in “SQL_CUR03ART31”

which shows the executing cursor.

For more detail about how Tableau uses cursors in Amazon Redshift, please see the More about cursors

section in ‘Other Tips.’

You turn cursors off by using a Tableau Data Customization (TDC), but this will cause ALL rows to be delivered
to Tableau simultaneously, potentially maxing out the RAM on your machine. You also generally won’t want
to try an extract from Redshift with cursors turned off for the same reason.

You can read about leveraging a TDC here.

To create a TDC and turn off cursors, open the XML of your data source by opening the workbook or data
source using a text editor.

Here is a basic customization which will turn cursors off (UseDelcareFetch=0):

<connection-customization class=’redshift’ version=’9.0’ enabled=’true’>

 <vendor name=’redshift’ />

 <driver name=’redshift’ />

 <customizations>

	 <customization name=’odbc-connect-string-extras’ value=’UseDeclareFetch=0’ />

 </customizations>

</connection-customization>

29

https://help.tableau.com/current/pro/desktop/en-us/odbc_customize.htm

You can deploy a TDC using one of two approaches:

The customization above can be dropped into a text file with a .TDC extension and deposited into your
Documents\My Tableau Repository\Datasources (Desktop) or Program Files\Tableau\Tableau Server\<version>\
bin (Server) folder.

The customization can also be added directly to the XML of your data source. If you open your workbook and/
or data source with a text editor, you might see something like this:

<named-connections>

 <named-connection caption=’foo.foo.ap-southeast-1.redshift.amazonaws.com’
name=’redshift.1foo’>

 <connection class=’redshift’ dbname=’tpchdslitev1’ odbc-connect-string-extras=’’ one-
time-sql=’’ port=’5439’ schema=’public’

 server=foo.foo.ap-southeast-1.redshift.amazonaws.com’ single-node=’no’ sslmode=’’
username=’foo’ /

 </named-connection>

 </named-connections>

Change it to this:

<named-connections>

 <named-connection caption=’foo.foo.ap-southeast-1.redshift.amazonaws.com’
name=’redshift.lfoo’>

 <connection class=’redshift’ dbname=’tpchdslitev1’

odbc-connect-string-extras=’UseDeclareFetch=0’ one-time-sql=’’ port=’5439’

 schema=’public’ server=’foo.foo.ap-southeast-1.redshift.amazonaws.com’ single-
node=’no’ sslmode=’’ username=’root’>

 <connection-customization class=’redshift’ enabled=’true’ version=’10.1’>

 <vendor name=’redshift’ />

 <driver name=’redshift’ />

 <customizations>

 <customization name=’odbc-connect-string-extras’
value=’UseDeclareFetch=0’ />

 </customizations>

 </connection-customization>

 </connection>

 </named-connection>

</named-connections>

30

You can also simplify the named connection and simply use the odbc-connect-string by itself.

 <named-connections>

 <named-connection caption=’foo.foo.ap-southeast-1.redshift.amazonaws.com’
name=’redshift.1foo’>

 <connection class=’redshift’ dbname=’tpchdslitev1’

odbc-connect-string-extras=’UseDeclareFetch=0’ one-time-sql=’’ port=’5439’

 schema=’public’ server=foo.foo.ap-southeast-1.redshift.amazonaws.com’ single-
node=’no’ sslmode=’’ username=’foo’ /

 </named-connection>

 </named-connections>

You may want to go with the “inline data source” technique if you don’t want the TDC file to apply globally. If
you deploy a TDC for a vendor/driver to your Tableau Server, then ALL of the workbooks you deploy which use
the same vendor/driver MUST use that TDC. If someone tries to publish or execute a “non-TDC-ed” workbook,
you can expect to see an error message like this:

“Keychain authentication does not work because either the required TDC file is missing from Tableau Desktop, 		
or the TDC file on Tableau Desktop differs from the TDC file on Tableau Server”

 This will also break extract refreshes that used to work. Once you make these changes to remove cursors,
you’ll now see Tableau’s queries in the AWS console, and can make the right adjustments accordingly.

A few other considerations

More about cursors

Tableau uses cursors when returning queried data from Amazon Redshift. Using cursors lets Tableau retrieve

large data sets efÏciently by retrieving results a chunk at a time rather than all at once, reducing the amount
of memory consumed.

Despite allowing you to retrieve more data than would otherwise be possible, cursors do come with some
performance side effects. Cursors force all data to be streamed to the Leader Node before returning data to
Tableau, potentially leading to slower response times.

Amazon Redshift also sets a limit on the space allocated to cursors on each node depending on the node type.

For example, a Dense Compute node (DC2) 8XL multiple nodes cluster has a maximum result set of 3,200,000
MB. If you exceed this limit, resultsets will be written to disk, as needed.

See Cursor constraints in the Amazon Redshift Developer Guide for more information and limits.

For more information on working with cursors and Tableau, see Working with Amazon Redshift Concurrent

Cursor Limit in the Tableau Community Forums.

31

https://docs.aws.amazon.com/redshift/latest/dg/declare.html#declare-constraints
https://community.tableau.com/docs/DOC-6323
https://community.tableau.com/docs/DOC-6323

Workload Management and Concurrency

Amazon Redshift allows you to manage query execution via Workload Management (WLM) queues. WLM
queues manage how many concurrent queries are executed and how much of your cluster’s RAM a query can
consume. By default, each Amazon Redshift cluster has a single WLM queue which allows a maximum of five
concurrent queries to run. This number can be modified when you create custom WLM queue(s).

WLM can be configured in two modes: AUTO and MANUAL. With Auto WLM, Amazon Redshift manages query
concurrency and memory allocation its own to deliver best throughput. With Manual mode, you get control to
set WLM configuration, such as concurrency & memory allocation.

Now with Concurrency scaling, you can configure Redshift to add more query processing power as-needed
basis. When Concurrency Scaling is enabled, Amazon Redshift automatically adds additional transient

clusters when you need it to process an increase in concurrent read queries. This happens transparently and

in a manner of seconds, and provides you with fast, consistent performance even as the workload grows to

hundreds of concurrent queries.

You can also use the Amazon Redshift query monitoring rules feature to set metrics-based performance
boundaries for workload management (WLM) queues, and specify what action to take when a query goes
beyond those boundaries. For example, for a queue that’s dedicated to short running queries, you might create
a rule that aborts queries that run for more than 60 seconds. To track poorly designed queries, you might have
another rule that logs queries that contain nested loops. AWS also provides predefined rule templates in the
Amazon Redshift management console to get you started.

Here are recommended configuration for WLM:

•	 Enable Auto WLM.

•	 For Manual WLM, configure 15 or less concurrent slots across all queues when concurrency scaling is
disabled.

•	 Enable Concurrency Scaling to handle an increase in concurrent read queries ,with consistent fast query

performance.

•	 Enable Short Query Acceleration (SQA) so that short queries aren’t forced to wait in queues behind
longer queries.

•	 Create QMR rules to track and handle poorly written queries.

You can create additional WLM queues and pair them with Tableau’s Initial SQL feature. Doing so will allow
you to place specific queries into particular WLM queues, with simpler queries going to a “fast” queue with
less dedicated RAM, and more complex queries going to a “slow” queue with more RAM.

32

https://docs.aws.amazon.com/redshift/latest/dg/automatic-wlm.html
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://docs.aws.amazon.com/redshift/latest/dg/wlm-short-query-acceleration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify-qmr-console

Once you’ve created and configured different WLM queues, create multiple data connections in Tableau to the
same Amazon Redshift database. When connecting, use the Initial SQL feature to execute a SET query_group
statement. This tells Amazon Redshift which WLM queue to send the query to.

Figure 12

Initial SQL also supports the use of parameters, including variables such as the name of a Tableau Workbook,
or the name of a Tableau Server user. You can effectively use these parameters to force the work of certain
Tableau Workbooks into a “high-priority” (or “low-priority”) WLM queue. You can also direct queries run by
certain users to a specific WLM queue.

Figure 13

 For more on Amazon Redshift Workload Management Queues, see Tutorial: Configuring Workload
Management (WLM) Queues to Improve Query Processing.

For more on Tableau and Initial SQL, see Run Initial SQL in Tableau’s Online Help section.

33

https://docs.aws.amazon.com/redshift/latest/dg/tutorial-configuring-workload-management.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-configuring-workload-management.html
http://onlinehelp.tableau.com/current/pro/desktop/en-us/connect_basic_initialsql.html

Amazon Redshift and Tableau Extracts

While querying, Tableau can leverage live connections against Amazon Redshift or use Tableau Data Extracts.
Data extracts can help you avoid challenges around concurrency in Amazon Redshift. They also allow you to
perform pre-aggregation, which is valuable. Consider and test benefits of the TDE for your deployment. We
recommend you only extract small portions of your Amazon Redshift database. Choose “slices” of data that
are relevant to most of your users.

Here are some things to consider if you pursue this path:

•	 Aggregate extracts if you can. Tableau provides a number of ways to do this, including removing fields
that aren’t used within a workbook, or rolling date fields up to a higher-level-of-detail (e.g. months,
instead of seconds).

•	 Avoid scheduling multiple extract refreshes in parallel to avoid hitting the open cursor size limit.

•	 Check the size of the data you will extract in advance. Assuming you leverage cursors, Amazon Redshift
results are materialized on the Leader node of your cluster. This will slow down the extract process.
There is a maximum amount of data that can be materialized on the Leader node, depending on the size
and type of nodes in your cluster.

•	 Consider other users of your Amazon Redshift cluster. If you use all your cursor space on the Amazon

Redshift cluster and cause an error, anyone else currently using cursors on the same cluster will

encounter errors as well.

•	 As mentioned above, large node sizes provide more cursor space. Consider moving from large to 8xlarge
nodes.

If you absolutely need to extract the leaf level data, and cannot do with an aggregate, consider using an
alternative that leverages a few other AWS services.

34

Amazon Redshift Amazon S3 Amazon EMR

UNLOAD

CREATE

EXTERNAL

TABLE

Figure 14

In the approach illustrated above, we’re avoiding forcing Redshift to act as an Operational Data Store
for Tableau, and instead doing an UNLOAD of the data into S3 (Redshift is super-fast at this). Then, we
dynamically spin up an instance of EMR and use our favorite approach to ingest (Drill, Presto, or Spark) and
make the data available. Tableau can extract directly from EMR, and the stand-up / extract / tear-down can
be scripted and automated.

Amazon Redshift Spectrum

We announced an update to our Amazon Redshift connector with support for Amazon Redshift Spectrum

(external S3 tables) in November 2017. This feature was released as part of Tableau 10.3.3 and is available
broadly since Tableau 10.4.1. In Tableau, customers can now connect directly to data in Amazon Redshift and
analyze it in conjunction with data in Amazon Simple Storage Service (S3).

How does support for Amazon Redshift Spectrum help customers?

Many Tableau customers have large amount of data stored in Amazon S3. Amazon Redshift spectrum allows
you to extend the analytic power of Amazon Redshift beyond data stored on local disks of Amazon Redshift
cluster. Redshift Spectrum uses the AWS Glue catalog and provides the same view of data across Redshift
Spectrum, Athena, and EMR.

With Redshift spectrum, you can run Redshift SQL queries against exabytes of data in Amazon S3 “Data
Lake” without loading data into Amazon Redshift and you pay only for the data you scanned. Like Amazon
Redshift itself, you get the benefits of a sophisticated query optimizer, fast access to data on local disks, and
scale out to thousands of nodes to scan and process exabytes of data sitting in Amazon S3—in few minutes.

35

Use cases that might benefit from the use of Amazon Redshift spectrum are:

•	 Large volumes but less frequently accessed data

•	 Heavy scan- and aggregation-intensive queries

•	 Selective queries that can use partition pruning and predicate pushdown, so the output is fairly small

Amazon Redshift Spectrum provides the freedom to store data where you want, in the format you want, and

have it available for processing when you need it. Since the Amazon Redshift Spectrum launch, Tableau has

worked tirelessly to provide best-in-class support for this new service, allowing customers to extend their
Amazon Redshift analyses out to the entire universe of data in your Amazon S3 data lake.

With Amazon Redshift Spectrum, you now have a fast, cost-effective engine that minimizes data processed
with dynamic partition pruning. Further improve query performance by reducing the data scanned. You could
do this by partitioning and compressing data and by using a columnar format for storage.

Also refer to best practices for Amazon Redshift Spectrum to optimize Redshift Spectrum query performance

and cost.

Let’s explore how Tableau works with Amazon Redshift Spectrum. In this example, I’ll also show you how and
why you might want to connect to your AWS data in different ways, depending on your use case.

The experiment

I’m using the following pipeline to ingest, process, and analyze data with Tableau on an AWS stack.

File Source

Trips CSV

Trips

 CSV
Parquet

Raw Data

Presto

Amazon S3 EMR Engine Amazon S3

Amazon Redshift Spectrum

Amazon Redshift

Hyper

Ingest

Cleanse

Join/Lookup

Agregate

Compress

Partition

Figure 15

36

https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/

In this example, I’ll use the New York City Taxi data set as the source data. The data set has nine years’ worth

of taxi rides activity—including pick-up and drop-off location, amount paid, payment type—captured in 1.2
billion records.

The data lands in Amazon S3. It is cleansed and partitioned via Amazon EMR and converted to an analytically
optimized columnar Parquet format.

Note that you can point Tableau to the raw data in Amazon S3 (via Amazon Athena) as well as access the
cleansed data with Tableau using Presto via your Amazon EMR cluster. Why might you want to use Tableau
this early in the pipeline? Because sometimes you want to discover what’s out there and understand some
questions worth asking before you even start the analysis.

Once you discover those questions and determine if this sort of analysis has long-term advantages, you can

automate and optimize that pipeline, adding new data as soon as it arrives so you can get it to the processes

and people that need it. You may also want to provision this data to a highly performant “Hotter” layer
(Amazon Redshift or a Tableau extract) for repeated access.

As represented in the flow above, Amazon S3 contains the raw, denormalized taxi ride data at the timestamp
level of granularity. This is the fact table. Amazon Redshift has the time dimensions broken out by date,

month, and year, along with the taxi zone information.

Now let’s imagine that I’d like to know where and when taxi pickups happen on a certain date in a certain
borough. With support for Amazon Redshift Spectrum, I can now join the Amazon S3 tables with the Amazon

Redshift dimensions.

Figure 15

37

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

I can then analyze the data in Tableau to produce a borough-by-borough view of NYC ride density on
Christmas Day 2015.

Figure 16

I could also just look at Manhattan to identify pick-up “hotspots” where ride charges appear way higher
than average.

Figure 17

38

At the end of the day, your choice of data source that you connect to in Tableau should be based on what

variable you want to optimize for. For example, you may choose to connect live to Amazon Athena, Amazon
Redshift, or bring a subset of your data into a Tableau extract.

Start by considering:

•	 Cost: Are you comfortable with the serverless cost model of Amazon Athena and potential full scans vs.

the advantages of no set up?

•	 Performance: Do you want the throughput of local disk?

•	 Setup effort and time: Are you okay with the lead time of an Amazon Redshift cluster setup vs. just
bringing everything into a Tableau extract?

To meet the many needs of our customers, Tableau’s approach is simple: it’s all about choice. This includes

how you choose to connect to and analyze your data.

In addition, please also check out the AWS blogs on best practices for Amazon Redshift, best practices for

Amazon Redshift Spectrum, and best practices for designing ETL for guidance from AWS. Among other things

this provides recommendations to improve scan-intensive concurrent workloads, optimize storage, and

configure your cluster—all with an eye to improving performance.

Conclusion

Tableau Software and Amazon Redshift are two technologies that can provide a business intelligence platform

for today’s business users, users who demand responsive and visually compelling solutions. Both tools are

powerful, and keeping in mind these performance tips and techniques will help you understand how to

optimize the two tools together.

Tableau can turn any business user into a self-driven, question-and-answer superhero. Remember to design

dashboards with analytical workflows that focus on the right questions, and reduce the queries that Tableau
must execute.

Amazon Redshift allows anyone to deploy a data warehouse into the millions and billions of rows, all without

procuring hardware and at a fraction of the cost of traditional database administration. Simplifying the

schema and optimizing tables for the workflows you created in Tableau will make Amazon Redshift more
efÏcient.

Above all, test and measure the performance of the two technologies together. Make changes to each, and test
and measure them again. That’s how you will deliver a great user experience when using Tableau Software
with Amazon Redshift.

©2019 Amazon Web Services, Inc., or its afÏliates and Tableau Software, Inc., or its afÏliates. All Rights Reserved.

39

https://docs.aws.amazon.com/redshift/latest/dg/best-practices.html
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
https://aws.amazon.com/blogs/big-data/top-8-best-practices-for-high-performance-etl-processing-using-amazon-redshift/

40

